CHARA 2016: Adaptive Optics and Perspectives on Visible Interferometry

Complex closure amplitudes

Useful?

Effects of the atmosphere and instruments

 $\mathcal{V}_{12}^{\text{true}} = \left| \mathcal{V}_{12}^{\text{true}} \right| e^{i\Phi_{12}^{\text{true}}}$

 ϕ_3

 $\frac{(N-1)(N-2)}{2}$

 $\frac{(N-2)}{N}$

Closure phase

 $\begin{aligned} \mathrm{CP}_{123}^{\mathrm{obs}} &= \Phi_{12}^{\mathrm{obs}} + \Phi_{23}^{\mathrm{obs}} + \Phi_{31}^{\mathrm{obs}} \\ &= \Phi_{12}^{\mathrm{true}} + \Phi_{23}^{\mathrm{true}} + \Phi_{31}^{\mathrm{true}} \end{aligned}$

Independent Closure Phases

Fraction of phase information recovered

3 Telescopes (CLIMB, PAVO)33%4 Telescopes (VLTI)50%6 Telescopes (MIRC)67%21 Telescopes (PFI)90%

LESIA

 \mathcal{O}_3

 T_2

CHARA

Sources of amplitude variations

- Amplitude variations come from:
 - ATMOSPHERE
 - Fast atmosphere changes scintillation, strong in radio negligible in visible/IR
 - Slow atmosphere changes: "transfer function"
 - We use calibrators for $|\mathcal{V}|^2$
 - Closure amplitudes do not need this calibration
 - TELESCOPES/BEAM TRAIN
 - conventional throughput losses
 - adaptive optics
 - INSTRUMENTS
 - spatial filtering, fiber injection
 - BASELINES
 - polarization
 - Closure amplitudes are still affected by baseline-related decorrelation effects

CHARA

Quirks of closure amplitudes

Loosing zeroflux value → OK: unlike radio, we did not have it anyway
Basic bias emerging from error propagation:

- This is not even taking into account inherent bias from read-noise/Poisson
- Noise definitively not Gaussian-distributed
 - Division !
 - Though this is not unlike calibration with transfer function
 - Bad if denominator visibilities are low
 - Better compute inverse closure amplitude if higher SNR at numerator

Complex closure amplitude

Analogous to bispectrum T3, one can form a hereby-called T4

$$T4_{1234}^{obs} = \frac{\mathcal{V}_{12}^{obs}\mathcal{V}_{34}^{obs}}{\mathcal{V}_{14}^{obs}\mathcal{V}_{23}^{*obs}} = CA_{1234} e^{i\,QP_{1234}}$$

$$T4_{1234}^{obs} = \frac{|\mathcal{V}_{12}^{true}||\mathcal{V}_{34}^{true}|}{|\mathcal{V}_{14}^{true}||\mathcal{V}_{23}^{true}|} \frac{e^{i\left(\Phi_{12}^{true}+\Phi_{2}-\Phi_{1}\right)}e^{i\left(\Phi_{34}^{true}+\Phi_{4}-\Phi_{3}\right)}}{e^{i\left(\Phi_{14}^{true}+\Phi_{4}-\Phi_{1}\right)}e^{-i\left(\Phi_{23}^{true}+\Phi_{3}-\Phi_{2}\right)}}$$

$$= T4_{1234}^{true}$$
"Quad Closure Phase" $QP_{1234} = \Phi_{12}^{true} + \Phi_{23}^{true} + \Phi_{34}^{true} + \Phi_{41}^{true}$

Quad closure phases

- Quad phases are part of the kernel phase
 - free observables
 - they are only *partially* redundant with closure phase: they have different noise statistics
 - worse SNR, being made of 4 phases instead of 3
 - number of independent quad phases is the same as the number of independent closure phases
- Like closure phases, they measure assymetric flux
- Quad phases may be more independent of flux variations than closure phases
 - Provided closure amplitudes work

CHARA 2016: Adaptive Optics and Perspectives on Visible Interferometry

MIRC pipeline mod for T4: modulus (closure amp)

servatoire

GeorgiaStateUniversit

MIRC pipeline mod for T4: phase (quad phase)

Meanwhile in the closure phase world... higher SNR

Work in progress

- Ground libraries: julia and C code for handling T4 (OIFITSlib)
- Image reconstruction using T4⁴⁰
- In progress, simulations of T4 noise to improve debiasing from noise terms, similar to work by Gordon and Buscher (2012).
- Covariance matrix with closures phases
- First image from closure quantities only from good SNF data (but calibrated cphases)

