Sbsenvelire

THE CHARACTERIR TION OF EXOPLANEIS AND THEIR with VEC /CHARA

ROXANNELICI

CNES POST-DOCTORAL FELLOW
LABORATOIRE D'ASTROPHYSIQUE DE MARSEILLE

In collaboration with:
ORLAGH CREEVEY (OCA)
DENIS MOURARD (OCA/INSU)
AURÉLIEN CRIDA (OCA)
ANNE-MARIE LAGRANGE (IPAG)
NICOLAS NARDETTO (OCA)
KARINE PERRAUT (IPAG)
MATHIAS SCHULTHEIS (OCA)
ISABELLE TALLON-BOSC (CRAL)
THEO TEN BRUMMELAAR (GEROGIA STATE UNIVERSITY)

CONTENT

* FROM INTERFEROMETRY TO ANGULAR DIAMETERS
* STELLAR PARAMETERS FROM DIRECT MEASUREMENTS
* STELLAR AGES AND MASSES
* PLANETARY PARAMETERS
* THE CASE OF THE MULTIPLANETARY SYSTEM 55 CNC

INTRODUCTION

Valencia et al. (2006) : $\delta R_{p}=2 \%$

Fressin et al. (2012)

Goal: To obtain exoplanetary parameters accurate enough to constrain their internal structure.

INTRODUCTION

Radial Velocity

$$
\begin{aligned}
& \quad \frac{\left(m_{p} \sin i\right)^{3}}{\left(M_{\star}+m_{p}\right)^{2}}=\frac{P}{2 \pi G} K^{3}(1-e)^{3 / 2} \\
& \text { accuracy on } m_{p} / M_{\star} \ll 1 \%
\end{aligned}
$$

Transits

accuracy on $R_{p} / R_{\star} \ll 1 \%$
m_{p} and R_{p} depend on M_{\star} and R_{\star}. However, $\delta R_{\star} \approx 5 \%$ and $\delta M_{\star} \approx 10 \%$.
\rightarrow Obtain stellar parameters with 2% accuracy
\rightarrow Need stellar parameters to determine planetary parameters (Ligi et al. 2012a)

INTRODUCTION

3 parameters to be determined from models
$\rightarrow 3$ free parameters, 3D:

$$
R_{\star^{\prime}} M_{\star} \text { and age }{ }_{\star}
$$

Guillot \& Havel (2011)

INTRODUCTION

2 parameters from models:
M_{\star} and age ${ }_{\star}$

+ 1 measured parameter: R_{\star}
$\rightarrow 2$ free parameters, 2D

Guillot \& Havel (2011)

INTRODUCTION

The radius R_{\star} is a very important parameter
If we get R_{\star}, we need $T_{\text {eff, } \star}$ and L_{\star} to derive M_{\star} and age $_{\star}$

Guillot \& Havel (2011)

INTRODUCTION

The radius R_{\star} is a very important parameter
If we get $R_{\star^{\prime}}$ we need $T_{\text {eff, } \star}$ and L_{\star} to derive M_{\star} and age $_{\star}$

How?
$\mathrm{R}_{\star} \rightarrow$ interferometry
$\mathrm{T}_{\text {eff }, \star}$ and $\mathrm{L}_{\star} \rightarrow$ photometry (+ models)
M_{\star} and age ${ }_{\star} \rightarrow$ models

Guillot \& Havel (2011)

FROM INTERFEROMETRY TO ANGULAR DIAMETERS

* Selection of exoplanet host stars and potential hosts
(Ligi et al. 2012b, SPIE):

> F, G, K

* 0.3 mas $<\theta_{\star}<3$ mas
* $\mathrm{m}_{\mathrm{V}}<6.5$ and $\mathrm{m}_{\mathrm{K}}<6.5$
- $-30^{\circ}<\delta<+90^{\circ}$
* Spread over the H-R diagram
* From exoplanet.eu
* Result: 42 accessible stars with VEGA/CHARA.
* Final sample:
- 18 stars
* 10 exoplanet hosts
* Observations from 2010 to 2013

STELLAR PARAMETERS FROM DIRECT MEASUREMENTS

RADIUS

$$
R_{\star\left[R_{0}\right]}=\frac{\theta_{\mathrm{LD}[\mathrm{mas}]} \times d_{[\mathrm{pc}]}}{9.305} .
$$

* Examples of visibility curves from VEGA instrument
* Average accuracy: 1.9 \% on diameters $\left(\theta_{\mathrm{LD}}\right)$ and 3% on radii $\left(R_{\star}\right)$.

STELLAR PARAMETERS FROM DIRECT MEASUREMENTS

BOLOMETRIC FLUX AND LUMINOSITY

* Photometry from VizieR Photometry Viewer
* Fit from BASEL library spectra
* Take into account $\log (\mathrm{g}), \mathrm{Av},[\mathrm{Fe} / \mathrm{H}]$
* Average accuracy on $\mathrm{T}_{\text {eff, } \star}: 57 \mathrm{~K}$ in average

$$
T_{\mathrm{eff}, \star}=\left(\frac{4 \times F_{\mathrm{bol}}}{\sigma_{\mathrm{SB}} \theta_{\mathrm{LD}}^{2}}\right)^{0.25} \rightarrow L_{\star}=4 \pi d^{2} F_{\mathrm{bol}}
$$

STELLAR MASSES AND AGES

* Recall: why deriving stellar mass and ages?
* Provide benchmark stars to stellar physicists (also applies to non host stars, see O. Creevey's talk)
* Better understand planetary formation, age of the planetary system
* Derive planetary parameters

STELLAR MASSES AND AGES

* Recall: why deriving stellar mass and ages?
* Provide benchmark stars to stellar physicists (also applies to non host stars, see O. Creevey's talk)
* Better understand planetary formation, age of the planetary system
* Derive planetary parameters
* Masses and ages usually derived from models
(if no exception case like binaries...)
* We used PARSEC stellar models (Bressan et al. 2012).

STELLAR MASSES AND AGES

* Method: Interpolation
* Separation between 2 points of an isochrone are $<\sigma T_{\text {eff, } \star}$ and $<\sigma L_{\star}$
* Step in log(age ${ }_{\star}$) are 0.01 from 6.6 to 10.13
* [M/H] goes from 0.5 to -0.8 in steps of ~ 0.015 (not always the case!)
* Best fit (least square): minimizing the quantity

$$
\chi^{2}=\frac{\left(L-L_{\star}\right)^{2}}{\sigma_{L_{\star}}{ }^{2}}+\frac{\left(T_{\text {eff }}-T_{\text {eff }, \star}\right)^{2}}{\sigma_{T_{\text {eff. }}}{ }^{2}}+\frac{\left([\mathrm{M} / \mathrm{H}]-[\mathrm{M} / \mathrm{H}]_{\star}\right)}{\sigma_{[\mathrm{M} / \mathrm{H}]_{\star}}{ }^{2}}
$$

STELLAR MASSES AND AGES

Recipe to produce a simplified map of \mathcal{L} in the $\left(M_{\star}\right.$, age ${ }_{\star}$) plane

* Likelyhood function \mathcal{L} : probability of getting the observed data for a given set of stellar parameters (see Pont \& Eyer 2004, Jørgensen \& Lindegren 2005)
* Easy to express as a function of observables: $L_{\star^{\prime}} T_{\text {eff }, \star^{\prime}}[M / H] \star$
* Less easy to express as a function of the physical parameters: age ${ }_{\star} M_{\star}$

STELLAR MASSES AND AGES

Recipe to produce a simplified map of \mathcal{L} in the $\left(M_{\star}\right.$, age ${ }_{\star}$) plane

* Likelyhood function \mathcal{L} : probability of getting the observed data for a given set of stellar parameters (see Pont \& Eyer 2004, Jørgensen \& Lindegren 2005)
* Easy to express as a function of observables: $L_{\star^{\prime}} T_{\text {eff }, \star^{\prime}}[M / H] \star$
* Less easy to express as a function of the physical parameters: age ${ }_{\star} M_{\star}$

STELLAR MASSES AND AGES

Recipe to produce a simplified map of \mathcal{L} in the $\left(M_{\star}\right.$, age ${ }_{\star}$) plane

* Likelyhood function \mathcal{L} : probability of getting the observed data for a given set of stellar parameters (see Pont \& Eyer 2004, Jørgensen \& Lindegren 2005)
*. Easy to express as a function of observables: $\mathrm{L}_{\star^{\prime}} \mathrm{T}_{\text {eff, } \star^{\prime}}[\mathrm{M} / \mathrm{H}]{ }_{\star}$
* Less easy to express as a function of the physical parameters: age ${ }_{\star} M_{\star}$

STELLAR MASSES AND AGES

Recipe to produce a simplified map of \mathcal{L} in the $\left(M_{\star}\right.$, age ${ }_{\star}$) plane

* Likelyhood function \mathcal{L} : probability of getting the observed data for a given set of stellar parameters (see Pont \& Eyer 2004, Jørgensen \& Lindegren 2005)
* Easy to express as a function of observables: $L_{\star^{\prime}} T_{\text {eff }, \star^{\prime}}[M / H] \star$
* Less easy to express as a function of the physical parameters: age ${ }_{\star}{ }^{\prime} M_{\star}$

$$
\begin{aligned}
& \text { Least square: } \\
& \left(M_{\star}, \text { age }_{\star}\right)
\end{aligned}
$$

$$
\chi^{2}=\underbrace{\frac{\left(L-L_{\star}\right)^{2}}{\sigma_{L_{\star}{ }^{2}}^{2}}}_{<\underbrace{2}}+\frac{\left(T_{\text {eff }}-T_{\text {eff, },)^{2}}\right.}{\sigma_{T_{\text {efft }}^{2}}^{2}}+\frac{\left.([\mathrm{M} / \mathrm{H}]-[\mathrm{H}]-\mathrm{M} / \mathrm{H}]_{\star}\right)}{\underbrace{\sigma_{[\mathrm{M} / \mathrm{H}]_{\star}}{ }^{2}}_{<1,2,3}}
$$

STELLAR MASSES AND AGES

* This corresponds to the approximate likelyhood map in the (M_{\star}, age $_{\star}$) for which each term of the equation $x^{2}=\frac{\left(L-L_{\star}\right)^{2}}{\sigma_{L_{*}}{ }^{2}}+\frac{\left(T_{\text {eff }}-T_{\text {eff }, ~}\right)^{2}}{\sigma_{\text {fett }}{ }^{2}}+\frac{\left([\mathrm{M} / \mathrm{H}]-[\mathrm{M} / \mathrm{H}]_{\star}\right)}{\sigma_{\left[\mathrm{M} / / \mathrm{H}_{\star}{ }^{2}\right.}}$ is less than $1,2,3$.
* Then, least squares to give a value.

STELLAR MASSES AND AGES

* \mathcal{L} shows 2 different peaks for many MS stars:
* an old solution: < 400 Myrs
* a young solution: > 400 Myrs

Need additional stellar properties
(gyrochronology, chromospheric activity, Lithium abundance...) to validate the age.

STELLAR MASSES AND AGES

* M_{\star} and age ${ }_{\star}$ are not independent
* Clear negative correlation for the old solution

STELLAR MASSES AND AGES

How to calculate the error on ages and masses? Not easy.

* Monte-Carlo method?
\Rightarrow Bias on ages and masses but not on errors (see Jørgensen \& Lindgren 2005)
* Independent Gaussian sets of $T_{\text {eff, } \star}$ and L_{\star} ?
$=$ Erase the correlation between $\mathrm{T}_{\text {eff }, \star}$ and L_{\star}
= Large cloud of points

STELLAR MASSES AND AGES

How to calculate the error on ages and masses? Not easy.

Instead:

- 1500 quadruplets $\left\{F_{\text {bol }}\right.$ d, $\left.\theta,[\mathrm{M} / \mathrm{H}]\right\}$ (independent random Gaussian variables)
*. Combine them into triplets $\left\{L_{\star^{\prime}} T_{\text {eff }, \star^{\prime}}[\mathrm{M} / \mathrm{H}]_{\star}\right\}$
* Apply the least square procedure $\rightarrow 1500\left\{\mathrm{M}_{\star}\right.$, age $\left._{\star}\right\}$ pairs
* Compute the standard deviation of the masses and ages = errors

STELLAR MASSES AND AGES

STELLAR MASSES AND AGES

Average accuracy on masses:
7.6\% for old solutions 10\% for young solutions

Accuracy on ages: Myrs and Gyrs

STELLAR MASSES AND AGES

CONTENT

* FROM INTERFEROMETRY TO ANGULAR DIAMETERS
* STELLAR PARAMETERS FROM DIRECT MEASUREMENTS
* STELLAR AGES AND MASSES
* PLANETARY PARAMETERS
* THE CASE OF THE MULTIPLANETARY SYSTEM 55 CNC

PLANETARY PARAMETERS

* Usually: Radial Velocity (RV) detections
* Thus we obtain $m_{p} \sin (i)$ from RV and stellar masses:

$$
m_{\mathrm{p}} \sin (i)=\frac{M_{\star}^{2 / 3} P^{1 / 3} K\left(1-e^{2}\right)^{1 / 2}}{(2 \pi G)^{1 / 3}}
$$

* Habitable Zone (HZ) (Jones et al. 2006) $\propto L_{\star} / T_{\text {eff, } \star}{ }^{2}$
* Semi-major axis $\propto M_{\star}^{1 / 3}$
\rightarrow New estimations of $H Z$, semi-major axis (au) and $m_{p} \sin (i)$ from our measurements.

PLANETARY PARAMETERS

* Usually: Radial Velocity (RV) detections
* Thus we obtain $m_{p} \sin (i)$ from RV and stellar masses:

$$
m_{\mathrm{p}} \sin (i)=\frac{M_{\star}^{2 / 3} i^{1 / 3} K\left(1-e^{2}\right)^{1 / 2}}{(2 \pi G)^{1 / 3}}
$$

* Habitable Zone (HZ) (Jones et al. 2006)

* Semi-major axis of $M^{1 / 3}$
\rightarrow New estimations of HZ, semi-major axis (au) and $m_{p} \sin (i)$ from our measurements.

PLANETARY PARAMETERS

THE MULTIPLANETARY SYSTEM 55 CNC

* 55 Cnc: 5 exoplanets
* 55 Cnc e transits its star, and is a super-Earth (Winn et al. 2011, Demory et al. 2011)

THE MULTIPLANETARY SYSTEM 55 CNC

* Well studied star
* Photometry (transit) + the direct estimate of R_{\star} (this work)
\rightarrow direct estimate of R_{p}
* Maxted et al. (2015) measured the stellar density ρ_{\star} of 55 Cnc from photometry:

$$
\rho_{\star}=\frac{P}{T^{3}} \frac{3}{\pi^{2} G}
$$

$\rightarrow R_{\star}+\rho_{\star}=$ direct estimate of the stellar mass!
\rightarrow direct estimate of m_{p}

- Direct estimate of the planetary density!

$$
\rho_{p}=\frac{3^{1 / 3}}{2 \pi^{2 / 3} G^{1 / 3}} \rho_{\star}^{2 / 3} R_{\star}^{-1} T D^{-3 / 2} P^{1 / 3} K\left(1-e^{2}\right)^{1 / 2}
$$

THE MULTIPLANETARY SYSTEM 55 CNC

Stellar Results

* Using the stellar density: $M_{\star}=0.96 \pm 0.067 M_{\odot}$
- From isochrones:
* Young solution: $M_{\star}=0.968 \pm 0.018 M_{\odot}, 30.0 \pm 3.028$ Myrs
* Old solution: $M_{\star}=0.874 \pm 0.013 \mathrm{M}_{\odot}, 13.19 \pm 1.18$ Gyrs

THE MULTIPLANETARY SYSTEM 55 CNC

Planetary results

Planet	a	$m_{\mathrm{p}} \sin (i)$
	$[\mathrm{au}]$	$\left[M_{\mathrm{Jup}}\right]$
b	0.1156 ± 0.0027	0.833 ± 0.039
c	0.2420 ± 0.0056	0.1711 ± 0.0089
d	5.58 ± 0.13	3.68 ± 0.17
e	0.01575 ± 0.00037	$8.66 \pm 0.50^{*} M_{\oplus}$
f^{\dagger}	0.789 ± 0.018	0.180 ± 0.012

55 Cnc e	
$\mathrm{R}_{\mathrm{p}}\left[R_{\oplus}\right]$	$2.031_{-0.088}^{+0.091}$
$\mathrm{M}_{\mathrm{p}}\left[M_{\oplus}\right]$	8.631 ± 0.495
$\rho_{\mathrm{p}}\left[\mathrm{g} . \mathrm{cm}^{-3}\right]$	$5.680_{-0.749}^{+0.799}$

* Super-Earth
- All stellar parameters come from direct measurements
* better accuracy
- Better accuracy on the density:
* compared to Winn et al. (2011) and Demory et al. (2011) $\sim 25 \% \rightarrow 12 \%$
* error on ρ_{p} dominated by error on TD.
* 55 Cnc e has a terrestrial density!

TOWARD A BAYESIAN APPROACH

* Add hypothesis on the distribution of the parameters:
\rightarrow add a « prior » to the distribution
* Take into account the physics of the parameters
* In the case of 55 Cnc
\rightarrow « prior » on M_{\star} and age ${ }_{\star}$

CONCLUSIONS

* Direct observables (especially the radius) are necessary to improve the accuracy of stellar ages and masses.
* In any case, the estimation of the error is very important, and can be obtained with MC.
* Bayesian approach to be compared to interpolation.
* Taking $[M / H]$ it into account increases the error on M_{\star} and age ${ }_{\star}$, but leads to more realistic results.

CONCLUSIONS

* Stellar parameters are needed to derive planetary parameters.
* Direct stellar density gives a direct estimates of stellar masses (ex.: 55 Cnc).
* Extend to HD189733, HD209458...
- 55 Cnc system
* new estimation of stellar masses and ages
* new and more accurate estimations of planetary radius, mass and density for the transiting planet 55 Cnc e.

Thank you!

