

LAST RESULTS ON THE CHARACTERIZATION OF EXOPLANETS AND THEIR STELLAR HOSTS with VEGA/CHARA Ligi et al. 2016, A&A, 586, A94

ROXANNE LIGI

CNES POST-DOCTORAL FELLOW LABORATOIRE D'ASTROPHYSIQUE DE MARSEILLE In collaboration with: ORLAGH CREEVEY (OCA) DENIS MOURARD (OCA/INSU) AURÉLIEN CRIDA (OCA) ANNE-MARIE LAGRANGE (IPAG) NICOLAS NARDETTO (OCA) KARINE PERRAUT (IPAG) MATHIAS SCHULTHEIS (OCA) ISABELLE TALLON-BOSC (CRAL) THEO TEN BRUMMELAAR (GEROGIA STATE UNIVERSITY)

- FROM INTERFEROMETRY TO ANGULAR DIAMETERS
- STELLAR PARAMETERS FROM DIRECT MEASUREMENTS
- STELLAR AGES AND MASSES
- PLANETARY PARAMETERS
- ✤ THE CASE OF THE MULTIPLANETARY SYSTEM 55 CNC

Goal: To obtain exoplanetary parameters accurate enough to constrain their internal structure.

m_p and R_p depend on M₁ and R₁. However, $\delta R_{1} \approx 5\%$ and $\delta M_{1} \approx 10\%$.

- → Obtain stellar parameters with 2% accuracy
- → Need stellar parameters to determine planetary parameters (Ligi et al. 2012a)

3 parameters to be determined from models → 3 free parameters, 3D:

 R_{\star}, M_{\star} and age \star

2 parameters from models: M★ and age★

- + 1 measured parameter: R
- → 2 free parameters, 2D

The radius R_{\star} is a very important parameter If we get R_{\star} , we need $T_{eff,\star}$ and L_{\star} to derive M_{\star} and age_{\star}

FROM INTERFEROMETRY TO ANGULAR DIAMETERS

- Selection of exoplanet host stars and potential hosts (Ligi et al. 2012b, SPIE):
 - * F, G, K
 - * 0.3 mas < θ_{\star} < 3 mas
 - $m_{\rm V}$ < 6.5 and $m_{\rm K}$ < 6.5
 - 30° < δ < +90°
- Spread over the H-R diagram
- From exoplanet.eu
- Result: 42 accessible stars with VEGA/CHARA.
- Final sample:
 - 18 stars
 - 10 exoplanet hosts
 - Observations from 2010 to 2013

STELLAR PARAMETERS FROM DIRECT MEASUREMENTS

- Examples of visibility curves from VEGA instrument
- Average accuracy: 1.9 % on diameters (θ_{LD}) and 3% on radii (R_{\perp}).

STELLAR PARAMETERS FROM DIRECT MEASUREMENTS

BOLOMETRIC FLUX AND LUMINOSITY

- Photometry from VizieR Photometry Viewer
- Fit from BASEL library spectra
- Take into account log(g), Av, [Fe/H]
- Average accuracy on T_{eff,★}: 57K in average

$$T_{\rm eff,\star} = \left(\frac{4 \times F_{\rm bol}}{\sigma_{\rm SB} \theta_{\rm LD}^2}\right)^{0.25} \Longrightarrow L_{\star} = 4\pi d^2 F_{\rm bol}$$

- Recall: why deriving stellar mass and ages?
 - Provide benchmark stars to stellar physicists
 (also applies to non host stars, see O. Creevey's talk)
 - Better understand planetary formation, age of the planetary system
 - Derive planetary parameters

- Recall: why deriving stellar mass and ages?
 - Provide benchmark stars to stellar physicists
 (also applies to non host stars, see O. Creevey's talk)
 - Better understand planetary formation, age of the planetary system
 - Derive planetary parameters
- Masses and ages usually derived from models (if no exception case like binaries...)
- We used PARSEC stellar models (Bressan et al. 2012).

Method: Interpolation

- ♦ Separation between 2 points of an isochrone are $< \sigma T_{eff, +}$ and $< \sigma L_{+}$
- Step in log(age) are 0.01 from 6.6 to 10.13
- [M/H] goes from 0.5 to -0.8 in steps of ~0.015 (not always the case!)

Best fit (least square): minimizing the quantity

$$\chi^{2} = \frac{(L - L_{\star})^{2}}{\sigma_{L_{\star}}^{2}} + \frac{(T_{\text{eff}} - T_{\text{eff},\star})^{2}}{\sigma_{T_{\text{eff},\star}}^{2}} + \frac{([M/H] - [M/H]_{\star})}{\sigma_{[M/H]_{\star}}^{2}}$$

- Likelyhood function L: probability of getting the observed data for a given set of stellar parameters (see Pont & Eyer 2004, Jørgensen & Lindegren 2005)
 - ✤ Easy to express as a function of observables: L, T, T, [M/H]
 - Less easy to express as a function of the physical parameters: age, M

- Likelyhood function L: probability of getting the observed data for a given set of stellar parameters (see Pont & Eyer 2004, Jørgensen & Lindegren 2005)
 - ✤ Easy to express as a function of observables: L, T, [M/H]
 - Less easy to express as a function of the physical parameters: age, M

$$\chi^{2} = \frac{(L - L_{\star})^{2}}{\sigma_{L_{\star}}^{2}} + \frac{(T_{\text{eff}} - T_{\text{eff},\star})^{2}}{\sigma_{T_{\text{eff},\star}}^{2}} + \frac{([M/H] - [M/H]_{\star})}{\sigma_{[M/H]_{\star}}^{2}}$$
<1,2,3

- Likelyhood function L: probability of getting the observed data for a given set of stellar parameters (see Pont & Eyer 2004, Jørgensen & Lindegren 2005)
 - ♦ Easy to express as a function of observables: L_{\star} , $T_{eff, \star}$, [M/H]
 - Less easy to express as a function of the physical parameters: age, M

- Likelyhood function L: probability of getting the observed data for a given set of stellar parameters (see Pont & Eyer 2004, Jørgensen & Lindegren 2005)
 - ♦ Easy to express as a function of observables: L_{\star} , $T_{eff, \star}$, [M/H]

Less easy to express as a function of the physical parameters: age, M

- This corresponds to the approximate likelyhood map in the (M_{\star} , age_{\star}) for which each term of the equation $\chi^2 = \frac{(L L_{\star})^2}{\sigma_{L_{\star}}^2} + \frac{(T_{\text{eff}} T_{\text{eff},\star})^2}{\sigma_{T_{\text{eff},\star}}^2} + \frac{([M/H] [M/H]_{\star})}{\sigma_{[M/H]_{\star}}^2}$ is less than 1, 2, 3.
- Then, least squares to give a value.

✤ L shows 2 different peaks for many MS stars:

- an old solution: < 400 Myrs</p>
- a young solution: > 400 Myrs

Need additional stellar properties (gyrochronology, chromospheric activity, Lithium abundance...) to validate the age.

- M_{*} and age_{*} are not independent
- Clear negative correlation for the old solution

How to calculate the error on ages and masses? Not easy.

- Monte-Carlo method?
 - Bias on ages and masses but not on errors (see Jørgensen & Lindgren 2005)
- ♦ Independent Gaussian sets of $T_{eff, \star}$ and L_{\star} ?
 - \Rightarrow Erase the correlation between T_{eff, \star} and L_{\star}
 - Large cloud of points

How to calculate the error on ages and masses? Not easy.

Instead:

- 1500 quadruplets {F_{bol}, d, θ, [M/H]}
 (independent random Gaussian variables)
- ♦ Combine them into triplets $\{L_{\star}, T_{eff, \star}, [M/H]_{\star}\}$
- * Apply the least square procedure \rightarrow 1500 {M_{*},age_{*}} pairs
- Compute the standard deviation of the masses and ages = errors

- FROM INTERFEROMETRY TO ANGULAR DIAMETERS
- STELLAR PARAMETERS FROM DIRECT MEASUREMENTS
- STELLAR AGES AND MASSES
- PLANETARY PARAMETERS
- ✤ THE CASE OF THE MULTIPLANETARY SYSTEM 55 CNC

PLANETARY PARAMETERS

Usually: Radial Velocity (RV) detections

Thus we obtain m_psin(i) from RV and stellar masses:

$$m_{\rm p}\sin(i) = \frac{M_{\star}^{2/3}P^{1/3}K(1-e^2)^{1/2}}{(2\pi G)^{1/3}}$$

* Habitable Zone (HZ) (Jones et al. 2006) $\propto L_{\star}/T_{eff,\star}^{2}$

Semi-major axis $\propto M_{+}^{1/3}$

→ New estimations of HZ, semi-major axis (au) and m_psin(i) from our measurements.

PLANETARY PARAMETERS

Usually: Radial Velocity (RV) detections

Thus we obtain m_psin(i) from RV and stellar masses:

PLANETARY PARAMETERS

- 55 Cnc: 5 exoplanets
- ✤ 55 Cnc e transits its star, and is a super-Earth (Winn et al. 2011, Demory et al. 2011)

- Well studied star
- Photometry (transit) + the direct estimate of R (this work)

 \rightarrow direct estimate of R_p

Maxted et al. (2015) measured the stellar density
 ρ_↓ of 55 Cnc from photometry:

$$\rho_{\star} = \frac{P}{T^3} \frac{3}{\pi^2 G}$$

→ $R_{\star} + \rho_{\star} = \text{direct estimate of the stellar mass!}$

→ direct estimate of m_p

Direct estimate of the planetary density!

$$\rho_p = \frac{3^{1/3}}{2\pi^{2/3}G^{1/3}} \rho_{\star}^{2/3} R_{\star}^{-1} T D^{-3/2} P^{1/3} K (1 - e^2)^{1/2}$$

Stellar Results

• Using the stellar density: $M_{\star} = 0.96 \pm 0.067 M_{\odot}$

From isochrones:

- ✤ Young solution: M_★ = 0.968 ± 0.018 M_☉, 30.0 ± 3.028 Myrs
- ♦ Old solution: M_★ = 0.874 ± 0.013 M_☉, 13.19 ± 1.18 Gyrs

Planetary results

Dlanat		
Planet	a	$m_{\rm p} \sin(i)$
	[au]	$[M_{Jup}]$
b	0.1156 ± 0.0027	0.833 ± 0.039
С	0.2420 ± 0.0056	0.1711 ± 0.0089
d	5.58 ± 0.13	3.68 ± 0.17
e	0.01575 ± 0.00037	$8.66\pm0.50^{*}$ M $_{\oplus}$
\mathbf{f}^{\dagger}	0.789 ± 0.018	0.180 ± 0.012

55 Cnc e			
$R_p [R_{\oplus}]$	$2.031^{+0.091}_{-0.088}$		
$\mathrm{M_p} \; [M_\oplus]$	8.631 ± 0.495		
$\rho_{\rm p} [{\rm g.cm^{-3}}]$	$5.680^{+0.709}_{-0.749}$		

- Super-Earth
- All stellar parameters come from direct measurements
 - better accuracy
- Better accuracy on the density:
 - ★ compared to Winn et al. (2011) and Demory et al. (2011)
 ~25% → 12%
 - * error on $\rho_{\rm P}$ dominated by error on TD.
 - 55 Cnc e has a terrestrial density!

TOWARD A BAYESIAN APPROACH

Add hypothesis on the distribution of the parameters:
 → add a « prior » to the distribution

Take into account the physics of the parameters

In the case of 55 Cnc
In the case of 55 Cnc

 \rightarrow « prior » on M_{\star} and age $_{\star}$

CONCLUSIONS

- Direct observables (especially the radius) are necessary to improve the accuracy of stellar ages and masses.
- In any case, the estimation of the error is very important, and can be obtained with MC.
 - Bayesian approach to be compared to interpolation.
- ☆ Taking [M/H] it into account increases the error on M★ and age★, but leads to more realistic results.

CONCLUSIONS

- Stellar parameters are needed to derive planetary parameters.
- Direct stellar density gives a direct estimates of stellar masses (ex.: 55 Cnc).
 - Extend to HD189733, HD209458...
- 55 Cnc system
 - new estimation of stellar masses and ages
 - new and more accurate estimations of planetary radius, mass and density for the transiting planet 55 Cnc e.

Thank you!