Nearby red supergiants with the CHARA interferometer

Miguel Montargès (IRAM Grenoble)

in collaboration with P. Kervella (UMI Franco-Chilena), G. Perrin (LESIA/Observatoire de Paris), A. Chiavassa (LAGRANGE/OCA), S. T. Ridgway (NOAO)

Nice - March 14th 2016

Stellar evolution

Miguel Montargès - CHARA Meeting

Triggering the RSG mass loss

- Physical process remains unknown (no flares, no large pulsations)
- $\bullet\,$ Verhoelst et al. (2006) proposed Al_2O_3 as nucleus for dust condensation
- Josselin & Plez (2007) suggested a convection triggered mass loss
- ullet Auriere et al. (2010) observed magnetic field \sim 1 G

Triggering the RSG mass loss

- Physical process remains unknown (no flares, no large pulsations)
- $\bullet\,$ Verhoelst et al. (2006) proposed Al_2O_3 as nucleus for dust condensation
- Josselin & Plez (2007) suggested a convection triggered mass loss
- ullet Auriere et al. (2010) observed magnetic field $\sim 1~{
 m G}$

 $\rightarrow\,$ Study of the photosphere + CSE

Antares (α Sco) & Betelgeuse (α Ori)

Parameter	Antares	Betelgeuse	
m (visible)	0.91	0.42	
m (IR)	-3.49	-3.73	
M (M _☉)	15 ± 5	21 ± 2	
$R (R_{\odot})$	~ 680	897 ± 211	
T _{eff} (K)	3707 ± 77	3690 ± 54	
d (pc)	~ 170	197 ± 45	
$ u_{\rm rad} ({\rm km.s^{-1}}) $	-3.50 ± 0.8	21.91 ± 0.51	
Spectral Type	M0.5lab M2lb		

Interferometric observations of Betelgeuse

- VLTI/PIONIER observations (4 telescopes, H band, low spectral resolution)
- 4 epochs of monitoring: Jan. 2012, Feb. 2013, Jan. 2014 and Nov. 2014
- Only the compact array configuration (baseline length \in [11; 36 m])
- Extended configuration lost to bad weather (3 times !)

Shape of the visibilities (2013)

- Consistent between the 4 epochs (3 different features to avoid detector saturation)
- Impossible to fit a UD or a LDD model

Shape of the closure phase (2013)

- Strong signal
- Incompatible with elliptical model

LDD model + gaussian hotspot

- Chiavassa et al. (2009, 2010) showed that convection can displace the nulls of the visibility function (as a function of P. A.)
- $\rightarrow\,$ Difficulty: angular diameter cannot be inferred from the first null anymore

LDD model + gaussian hotspot

- Consistent on the 4 epochs
- Consistent with spectro-polarimetric observations at TBL/NARVAL (Auriere et al. subm.)
- Spots already observed on Betelgeuse (see Haubois et al. 2009, Ravi et al. 2011, Ohnaka et al. 2011)

Receipt to fit RHD simulations (see Chiavassa et al. 2011):

• Have a stellar model (CO⁵BOLD, Freytag et al. 2012)

Receipt to fit RHD simulations (see Chiavassa et al. 2011):

- Have a stellar model (CO⁵BOLD, Freytag et al. 2012)
- Let the model evolve for a certain time
- Take (a lot of) snapshots (= realizations of convective pattern)

Receipt to fit RHD simulations (see Chiavassa et al. 2011):

- Have a stellar model (CO⁵BOLD, Freytag et al. 2012)
- Let the model evolve for a certain time
- Take (a lot of) snapshots (= realizations of convective pattern)
- Rotate each snapshot (on-sky star orientation)

Receipt to fit RHD simulations (see Chiavassa et al. 2011):

- Have a stellar model (CO⁵BOLD, Freytag et al. 2012)
- Let the model evolve for a certain time
- Take (a lot of) snapshots (= realizations of convective pattern)
- Rotate each snapshot (on-sky star orientation)
- FT to get interferometric characteristics

- Shape of the visibilities reproduced (a bit underestimated as Montargès et al. 2014)
- Really bad fit of the closure phases
- $\rightarrow\,$ Probably a missing ingredient in the simulations

- Shape of the visibilities reproduced (a bit underestimated as Montargès et al. 2014)
- Really bad fit of the closure phases
- $\rightarrow\,$ Probably a missing ingredient in the simulations
- \Rightarrow These results in Montargès et al. (2016), A&A, in press.

Perspectives with CHARA

The CSE with VLT/SPHERE (ZIMPOL)

Kervella et al. (2016)

Perspectives with CHARA

Antares@PIONIER : analytical model

Antares@PIONIER : analytical model

Antares@PIONIER : RHD simulations

- Mean reduced χ^2 between 15 and 24 (3 simulations)
- Visibilities overestimated (\neq Betelgeuse)
- Convection remains the best scenario to explain the high SF
- \Rightarrow Montargès et al. in prep.

Perspectives with CHARA

- 6 telescopes with MIRC + longest available baselines
- $\rightarrow\,$ Higher and unexplored spatial frequency domain
 - Convection signature : spatial power spectrum
- $\rightarrow\,$ New numerical constraints on simulations

Perspectives with CHARA

- 6 telescopes with MIRC + longest available baselines
- $\rightarrow\,$ Higher and unexplored spatial frequency domain
 - Convection signature : spatial power spectrum
- $\rightarrow\,$ New numerical constraints on simulations

Previous attempts

3 proposals accepted (2 on Betelgeuse + 1 on μ Cep)

Current project

Parameter	lpha Her	Betelgeuse	μ Cep
m (visible)	3.35	0.42	4.08
m (IR)	-3.05	-3.73	-1.27
heta (mas)	\sim 31 (1)	\sim 43 (2)	\sim 14 (3)
Spectral Type	M5lb	M2lb	M2ela

(1): Perrin et al. (2004), (2): Montargès et al. (2016), (3) : Perrin et al. (2007).

(see also. Ryan's talk tomorrow)

Current project

CHARA - MIRC 6T - 51 52 W1 W2 E1 E2 + PoP1 PoP2 PoP3 PoP5 PoP4 PoP5 Day: 2015-09-06 - Source: mu ceph

- An ingredient is apparently missing to explain the mass loss of RSG
- CHARA will give us access to an unknown spatial frequency domain on large RSG
- RSG with a similar spectral type can have a different convective activity

- An ingredient is apparently missing to explain the mass loss of RSG
- CHARA will give us access to an unknown spatial frequency domain on large RSG
- RSG with a similar spectral type can have a different convective activity

Thank you for your attention !