

Perspectives on a new visible 6T instrument on CHARA

Nice, 16 Mar 2016

Observatoire

Introductive remarks

- 8 years of VEGA and PAVO: limitations identified
- AO perspectives and progresses on the FRIEND demonstrator.
- Initial idea presented during CHARA Meeting in Atlanta last year
- Kick-off meeting in Nice on 21 Sep 2015 + follow-up meeting 11 Jan 2016 → a plan in ~20 actions for the conceptual study.
 → this meeting

Main actions

- Science program
- Detector issue
- Beam combination
- Fiber injection
- Fringe tracker

GeorgiaStateUm

- Software
- General organization

SESSION 1 – SCIENCE WITH VISIBLE BEAM COMBINERS

A short summary of the previous steps

White book for a visible interferometric instrument: Ph. Stee et al.

- Initial start at EII level by Olivier in 2012/2013
- Working groups by Philippe in 2014
- Various ESO meetings end of 2014/early 2015
- Meeting and publications in 2015

VLTI perspectives and CHARA framework

OPPORTUNITY FOR LARGE PROGRAMS

CHARA

CHARA 2016: Adaptive Optics and Perspectives on Visible Interferometry

Atlanta 2015

CHARA 2015 Annual Science Meeting - ATLANTA

We need a visible 6T beam combiner

- Excellent opportunity for fundamental parameter of stars survey or 'legacy' program. Already started yes but could be extended thanks to visible wavelengths, sensitivity and 'fast' observations with 6T.
- Also excellent case for imaging and spectral imaging
- Convergence of various efforts
 - PAVO, VEGA: visible and spectro-interferometry
 - MIRC: imaging and 6T operations
 - FLUOR: high precision
 - AO@CHARA
- Science preparation and technology developments

bservatoire LESIA

(B)

((a) Observatoire

White book cases for LP

- Surface-brightness-color relations
- Masses
- Fundamental parameters as a function of SpTy
 - Radius
 - Effective Temperature
 - Limb darkening

→ FROM EMPIRICAL MODELS TO MEASURES

- Exoplanets host stars
- Asteroseismic targets
- Original and unique support to a large panel of space missions
- Doug's opening remark:
 - single stars: Gaia, TESS, CHEOPS, PLATO;
 - binaries: stellar masses and stellar evolutionary outcomes

ervatoire

5 years * 50 nights $*8 \neq = 2000$ obj

- 8 stars / nights
 - 8x(Cal1+Obj+Cal2)*2=48 o/n
- 2015: 187n, 4699o →16o/n. Factor 3 missing
- But
 - AO \rightarrow 75% of 'good seeing' conditions
 - 6T means 15V²
 - Low spectral resolution and number of channels λ -coverage
- Probably feasible:
 - PAVO/FLUOR experience of fast shift
 - Queue scheduling and optimization

SESSION 2: INSTRUMENTATION

- Detector: OCAM2 Nüvu
- Beam combiner
 - FRIEND characterization (MAM)
 - Various combining schemes
 - IO tests
- Fibers

SESSION 3: INTERFACES WITH AO AND FT

Main open questions

- Quality of injection behind a partial AO?
 - Additional T/T?
 - Interfaces with the various CHARA loops?
- Need for a 6T coherence/fringe tracker
 - Science limits
 - Coherencing+ Coherent processing?

SESSION 4: CONTROL, OPERATION, DRS

Observatoire

Main open questions

- Principles for the instrument control software
 →CHARA standard
- Estimation of data flow, perspectives of archiving
- Data processing principles?

SESSION 5: DISCUSSION

Observatoire

Introduction

- Nice+Grenoble+Lyon initiative
- Based on VEGA+FRIEND
- But should not be a VEGA-like instrument
 - ... but a full CHARA one
 - ... and if possible and interesting: 1 for CHARA and 1 for VLTI
- Timeline for CHARA >2018?
- Timeline for VLTI >2020?
- Funding request to be prepared for next summer
- Partnership to be defined
 - many CHARA interfaces
 - Experience from PAVO, example of VISION
 - Synergy with MYSTIC/MIRCx for Group delay
 - FT-Gravity

Today's main points of conclusion?

- Science
 - Imaging/spectral-imaging
 - High-efficient θ machine
 - → <u>Sensitivity</u> (detector, AO, FT)
 - → Simple instrument with integrated pipeline, very few modes (2-3 maximum)
- Concept
 - Technology ready
 - Bulk/IO: choice to be sensitivity-driven
 - Multi-axial, dispersed fringes
- Interfaces (important for sensitivity and reliability)
 - Pupil and image trackers, LDC
 - AO and fiber injection
 - NIR for group-delay/fringe tracker: residuals versus magnitude/r0/dispersion...

ervatoire

- Control/operation/DRS
 - To be built on previous experience (see JMC talk) and CHARA integrated
 - More automatic processes towards final products

