

An Imaging Survey of Red Supergiants with CHARA-MIRC (updates)

Ryan Norris (GSU) PhD Advisor: Fabien Baron (GSU)

Observatoin

Our Goals

What do the surfaces of red supergiants look like?

We will construct the highest resolution images of the surfaces of red supergiants yet produced

Do RSG surface features relate to variability and convection?

We will image these stars over time scales ranging from months to years.

Are models of red supergiants correct?

We will confront models with our interferometric and spectroscopic data

Our Project

OBSERVING

- High resolution imaging of ~21 Red Supergiants (2-7 mas) with MIRC 6-T (H band)
- Complementary Spectroscopy & Photometry
- Follow up observations of select targets →variability of convective features on surfaces
- So far: Aug 17-23, 2015 Oct 24-27, 2015

• Now with 3 additional targets

with Miguel Montargès

IMAGING AND MODELLING

- Reconstruct Images: HARD!
- Get stellar parameters
 - MARCS & SATLAS models
- Compare observations to convection as predicted by 3D hydrodynamic models

1 night completely lost

3 ended early due to haze, smoke, or clouds 2 nights with 'good' seeing

Challenges

- OBSERVING
- Need telescope time
- Weather!

- MODELING & IMAGING
- Reconstructing Images
 - Correlated errors in data
 - Artifacts from image reconstruction
 - What's the best way to recover an image?
- Models
 - 1D model atmospheres don't treat convection realistically
 - Few 3D hydrodynamical models exist
 - Long computing time

Observatoire

Early results

Name	UD diameter (mas)	Error (mas) (don't believe these!)
41 Cyg	1.14	0.02
AD Per	2.44	0.02
AZ Cyg	3.74	0.01
BU Per	2.50	0.15
FZ Per	1.85	0.01
KK Per	3.04	0.82
Ksi Cyg	9.15	0.90
PP Per	1.48	0.02
RW Cyg	6.00	0.06
S Per	4.71	0.04
SU Per	3.24	0.01
W Per	2.71	0.18
XX Per	2.91	0.03

Correlation in the data

- Currently: We can calculate post-reduction pipeline
- Goal: Implement into pipeline

Covariance between V² And T3

LESIA

What might we see?

Current results

Current results

CHARA 2016: Adaptive Optics and Perspectives on Visible Interferometry Finding the best regularization for a known object

To find best regularizers •

- Compare results for simulated data to the source image
- Human eye is good at this...image ٠ metrics attempt to recreate this

"Best possible" image

Original Image

A New Regularizer?

- Goal: Move beyond bright spots to well defined cells in images
 - Idea: Get darker cell boundaries in our reconstruction
 - Flux lower than image average (excluding area outside star)
 - Surrounded by regions of steep flux change but rather constant flux in neighbors
 - SUGGESTIONS WELCOME!

CHARA 2016: Adaptive Optics and Perspectives on Visible Interferometry Detecting artifacts

To identify artifact **due to the** reconstruction process:

- Reconstruct many images using independent Markov Monte Carlo chains
- 2) Co-align resulting images based on given metric
- Compute statistics on the stack (mean, mode, median, standard deviation = error map)

)bservatoire

The SU Per supergiant

- CHARA 2016: Adaptive Optics and Perspectives on Visible Interferometry

First Images of SU Per... much work to be done

