Flux latitude distribution in late-type rotating stars or "gravity" darkening in late-type stars

Michel Rieutord with Raphaël Raynaud (post-doc in Teheran)

Institut de Recherche en Astrophysique et Planétologie, France

15 mars 2016

イロト イボト イヨト イヨト

- No magnetic field
- With magnetic fields

< ロト < 同ト < ヨト < ヨト

Outline

The simulations

- No magnetic field
- With magnetic fields

3 Conclusions

イロト イヨト イヨト イヨト

An old problem for eclipsing binaries

FIGURE : The light curve of TV Cas.

・ 同 ト ・ ヨ ト ・ ヨ ト

Modelling the light curve I Djurasevic et al. 2003, 2006

FIGURE : A model of TV Cas : T_{cooler}=5400 K.

ヘロト ヘ部ト ヘヨト ヘヨト

Modelling the light curve II Djurasevic et al. 2003, 2006

PH ASE = 0.25

ヘロト ヘ部ト ヘヨト ヘヨト

FIGURE : Another model of TV Cas : T_{cooler}=5500 K.

- The flux distribution influences the output of the modelling, namely the fundamental parameters of the stars.
- Binaries are difficult : let's consider single (fast) rotating stars.

イロト イポト イヨト イヨト

Gravity darkening in rotating stars

A simple approach assuming a barotropic radiative envelope shows that

$$\vec{F} = -\chi \vec{\nabla} T$$

if barotropic $T \equiv T(\Phi)$ and

$$\vec{F} = -\chi(\Phi)T'(\phi)\vec{\nabla}\Phi \implies \vec{F} \propto \vec{g}_{\rm eff}$$

von Zeipel (1924). So less effective gravity means less flux. VZ24 is approximate because stars are not exactly barotropic...

$$T_{\rm eff} \propto g_{\rm eff}^{\beta}$$
, with $\beta = 1/4$ for VZ24

$$T_{\rm eff} \propto g_{\rm eff}^{\beta}$$

With 2D-stellar models (computed with ESTER), we studied this problem and could establish that

$$\beta \sim \frac{1}{4} - \frac{\varepsilon}{3}$$

where $\varepsilon = (R_e - R_p)/R_e$ is the centrifugal flattening of a star. Ref : Espinosa Lara & Rieutord (2011), Rieutord (2015).

イロト イポト イヨト イヨト

Altair

FIGURE : Altair seen by CHARA (Monnier et al. 2007).

・ロト ・四ト ・ヨト・ヨト・

Gravity darkening exponents : theory versus observations

FIGURE : β versus ε . β Cas is F2, α Cep is A7...

Conclusions

The flux distribution also influences the output of the modelling, namely the fundamental parameters of the stars.

- The situation of early-type stars is well understood
- the case of late-type stars is not understood.

Until now people have used Lucy (1967) prescription which says

$\beta \sim 0.08$

for solar-type stars. We have shown that this exponent comes from the opacity laws imposed by H⁻ ions in solar type stars and therefore from the flux distribution of the upper photosphere.

イロト イボト イヨト イヨト

Conclusions

The flux distribution also influences the output of the modelling, namely the fundamental parameters of the stars.

- The situation of early-type stars is well understood
- the case of late-type stars is not understood.

Until now people have used Lucy (1967) prescription which says

$\beta \sim 0.08$

for solar-type stars. We have shown that this exponent comes from the opacity laws imposed by H^- ions in solar type stars and therefore from the flux distribution of the upper photosphere.

イロト イボト イヨト イヨト

The problem

- In a convective envelope the flux is governed by buoyancy which is perturbed by the Coriolis acceleration.
- Convection is less super-critical at the poles than at the equator ⇒ pole darkening.
- Buoyancy is weaker at equator than at pole, ⇒ equator darkening.

Who wins? Coriolis effect? Centrifugal effect?

what about magnetic fields?

lo magnetic field Vith magnetic fields

Outline

- No magnetic field
- With magnetic fields

3 Conclusions

イロト イヨト イヨト イヨト

No magnetic field With magnetic fields

The simulations

- We want to understand the role of the Coriolis force which is the main source of anisotropy.
- Make simulations of convection in a rotating spherical shell.
- Use the MAGIC code at the anelastic approximation (Gastine & Wicht 2012, Icarus).
 Impose :
 - the entropy drop (Rayleigh number)
 - rotation rate (Ekman number, Rossby number)
 - density stratification

イロト イポト イヨト イヨト

No magnetic field With magnetic fields

The simulations A look at the flow

FIGURE : Axisymmetric parts of the flow at Ra/Ra_c=1.5 and $N_{\rho} = 2$.

No magnetic field With magnetic fields

The simulations

Flux distribution while increasing convection strength

FIGURE : Flux distribution in latitude. Ek= 3×10^{-4} , n = 2, $\mathcal{P} = 1$, $\eta = 0.7$, $N_{\rho} = 6$, Ra^M_c = 1.038×10^{6} .

イロト イボト イヨト イヨト

No magnetic field With magnetic fields

Flux distribution in latitude

イロト イヨト イヨト イヨト

No magnetic field With magnetic fields

Flux distribution in latitude

イロト イヨト イヨト イヨト

No magnetic field With magnetic fields

Flux distribution in latitude : thick shell

ヘロト ヘ部ト ヘヨト ヘヨト

No magnetic field With magnetic fields

Flux distribution on the outer sphere (thick shell)

No magnetic field With magnetic fields

Flux distribution in latitude, with magnetic fields

イロト イヨト イヨト イヨト

No magnetic field With magnetic fields

Flow with magnetic fields

FIGURE : Axisymmetric parts of the flow at Ra/Ra_c=4.1 and N_{ρ} = 2.5, η = 0.35.

ヘロト ヘ部ト ヘヨト ヘヨト

No magnetic field With magnetic fields

Flux distribution on the outer sphere with \vec{B}

Outline

2 The simulations

- No magnetic field
- With magnetic fields

イロト イヨト イヨト イヨト

Preliminary conclusions

- Without \vec{B} : there is marked influence of Coriolis at Ra/Ra_c ≤ 20 and at low density contrast.
- At high density contrast upper layers have short turn-over times : screening effects of deep anisotropic flows.
- Magnetic fields seem to redistribute the fluxes

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Preliminary conclusions

- Without \vec{B} : there is marked influence of Coriolis at Ra/Ra_c ≤ 20 and at low density contrast.
- At high density contrast upper layers have short turn-over times : screening effects of deep anisotropic flows.
- Magnetic fields seem to redistribute the fluxes

(4 冊) (4 日) (4 日)

Preliminary conclusions

- Without \vec{B} : there is marked influence of Coriolis at Ra/Ra_c ≤ 20 and at low density contrast.
- At high density contrast upper layers have short turn-over times : screening effects of deep anisotropic flows.
- Magnetic fields seem to redistribute the fluxes

A (B) < (B) < (B) < (B) </p>

Outlooks

- If Coriolis effect is screened, then centrifugal effects might show up
- ... as long as magnetic fields do make spots on a large fraction of the surface.
- We'll observe θ Sco and ε Sgr with VLTI (Armando Domiciano, F. Vakili & I). They are fast rotating cool and big stars.
- Observing rapidly rotating F-stars (main-sequence) would be very interesting.

イロト イポト イヨト イヨト

Outlooks

- If Coriolis effect is screened, then centrifugal effects might show up
- ... as long as magnetic fields do make spots on a large fraction of the surface.
- We'll observe θ Sco and ε Sgr with VLTI (Armando Domiciano, F. Vakili & I). They are fast rotating cool and big stars.
- Observing rapidly rotating F-stars (main-sequence) would be very interesting.

Outlooks

- If Coriolis effect is screened, then centrifugal effects might show up
- ... as long as magnetic fields do make spots on a large fraction of the surface.
- We'll observe θ Sco and ε Sgr with VLTI (Armando Domiciano, F. Vakili & I). They are fast rotating cool and big stars.
- Observing rapidly rotating F-stars (main-sequence) would be very interesting.

イロト イポト イヨト イヨト