

Findings about Alignment in the AO Era

Judit Sturmann

LESIA

Introduction

Using new tools, which we have as parts of the AO system, everything is under a magnifying glass, requirements became more strict.

We installed beacons on AO boards at each telescope. These are capable of sending collimated 5"-beams back to the lab. Besides their main function, the beacon beams can serve also as new diagnostic tools: for example pinpointing vignetting close to the lab in the light pipes.

Some of the artificial sources should provide beams good enough for wave-front sensor calibration. We needed a new a procedure to check the focus of M1-M2 and the beacons; we now have a setup to do that using the rail telescope.

SH wave-front sensors for the LabAO are set up looking at the reduced beams of each telescope before turning to the BC area. The new sensors also provide means to start automating the routine daily alignment. Some known imperfections became, issues as we are trying to implement new automated procedures.

In this presentation I can share only a little bit of the findings associated with the implementation of the CHARA AO system.

Topics Selected for this Presentation

- Alignment sources
- Using the rail camera: choosing the right time scale
- Lab-WFS auto align except S1

- Light in 1 beam at a time
- At least 4 time more light than normal path

- Light in 2 beams at a time
- Used also for phase referencing

Observatoire

Light Source Requirements for AO

1) new wavelength: BLUE

2) good quality wave-front for WFS calibration

3) bright enough

CHARA

Available Through WL Path

CHARA

CHARA 2016: Adaptive Optics and Perspectives on Visible Interferometry

Alignment Sources Recent Improvements

• New fiber collimator -

28 mm

27 mm

~ 8.3 mm

Lens D = 8 mm f = 20 mm

• Improved LED injection \rightarrow

LED 465 nm

Thorlabs LED465E

GeorgiaStateUniv

more light due to better NA matching, more colors, more fiber connector type for lab alignment beam

over 3x more* blue light compared to first version injection

Alignment Sources Recent Improvements

New fiber collimator

Improved LED injection \rightarrow more light, more colors, more fiber connector type for lab alignment beam

S2 Labwfs total

old ~750 → new ~2750

Evaluation of the Lab Sources

Procedure

Having the Test-WFS focused on sky, I used to test the beam quality of the

- Green lab laser
- CHARA white light source
- New fiber collimator (white LED-light was injected into the fiber)

The Test-WFS was set up on the metrology table looking toward the lab sources in beam 4. Both the engineering path, and the normal path through the VIS beam combiner were tested with all sources.

Test-WFS Focused on Sky

			8/12/2015			
		Source: Vega	a			
	File names: focused-Vega					
			Front Surfer Report			
		zernikes [µm]	[wave@550nm]		
		-0.0044	-0.0080	focus		
		0.0266	6 0.0484	astigmatism		
		-0.0258	-0.0469	astigmatism		
		0.0185	5 0.0337	coma		
Full aperture	D=50 mm	0.0021	0.0039	coma		
Strehl :	0.94	0.0074	0.0134	trifoil		
		-0.0063	-0.0115	trifoil		
		0.0193	3 0.0350	spherical ab.		
		-0.0072	-0.0131			
		0.0013	3 0.0024			
	D _{lenslet} ~3.9	mm				

At the time of focusing, the Test-WFS had a green filter in it: peak at 550 nm.

)bservatoire

Lab Sources in the Test-WFS

Green filter in the Test-WFS (550 nm)

* Corrected with the on sky focus term

Observatoire

These data were taken on 8/14/2015 with the on-sky-focused Test-WFS using the same green filter in the Test-WFS (550 nm)

Zernike coefficients* in μm measured in the lab

	Α	В	С	D	E
	Engb 4	Engb 4	VIS B4	Engb 4	VIS B4
	CHARA WL	Fib. launcher	Fib. launcher	Green laser	Green laser
	source	White LED	White LED		
focus	0.013	0.008	-0.049	-0.068	-0.090
astigmatism	-0.004	0.010	0.102	0.010	0.009
astigmatism	0.023	-0.026	-0.003	-0.077	-0.024
coma	0.012	-0.005	-0.009	0.002	0.003
coma	-0.037	0.046	0.026	0.026	0.055
trifoil	-0.018	0.003	-0.007	0.026	0.046
trifoil	-0.036	0.015	-0.014	0.012	0.038
spherical ab.	-0.035	-0.025	-0.029	-0.039	-0.062
	0.007	0.003	0.005	0.021	0.008
	0.023	-0.019	-0.012	-0.009	-0.043

- A: CHARA white light source \rightarrow Engineering beam 4
- B: New collimator + white LED \rightarrow Engineering beam 4
- C: New collimator + white LED \rightarrow VIS B4
- D: Green lab alignment laser \rightarrow Engineering beam 4
- E: Green lab alignment laser \rightarrow VIS B4

* Corrected with the on sky terms

)bservatoire

Evaluation of Lab Sources Summary

- 1. The wave front quality through the engineering path is better than through the VIS beam combiner.
- 2. Both collimators in the WL-path are well focused.
- 3. The first 10 terms of **wave-front aberrations** from both WL-path collimators are **under 50 nm through the engineering path** in front of the beam samplers.
- The focus of the green alignment laser is not stable. (It was focused ~ 6 months before this test.)

For LabAO calibration use the engineering beam with the blue LED

CHARA

The Rail Camera

This setup could be used to check the focus of the beacon or the telescope.

On the delay line

The beacon on the AO board:F/8 on-axis parabolic mirror(F = 1.2 m)Single mode fiber tip in focusOnce the fiber tip is on-axis \rightarrow the wave

the wave-front should be good, except the focus is temperature dependent.

On the AO board

The Rail Camera

This setup could be used to check the focus of the beacon or the telescope.

On the delay line

The rail telescope aperture is D=125 mm. (The CHARA beam size.) There are strings in front of the big objective at the distance of the two holes in the Hartmann mask. The camera is mounted on a separate platform on the rail. On the AO board

The 2-hole mask can be remotely moved in/out of the beam.

Beacon in the Rail Camera

S2 beacon Mask out

to smaller holes [d~16mm] for easier image processing.

Recently changed

ervatoire

Capella in the Rail Camera

S2 Focus Test using Capella

Telescope Focus Test with 2-Hole Mask No adjustments were done to any of the optical components.

Note: The telescope is designed to be athermal. Any change should be due to the atmosphere, including dome seeing.

Beam Switching Toward Automation

- 1. The laser is aligned to the target on the E table as usual. No automation yet.
- 2. <u>Auto alignment of BS dichroic</u> <u>splitters can be done using</u> <u>LabAO WFS</u>

when all spots are in their boxes

- The alignment-laser spots not yet well centered in the boxes
- LAB button pressed, and the beam sampler dichroic tilt will be automatically optimized until |X| and |Y| < 0.01

S1 Beam Switching

- 1. The laser is aligned to the target on the E table as usual. No automation yet.
- 2. <u>Auto alignment of BS dichroic does NOT work</u> when laser spots fall outside their boxes on LabAO WFS display.

Switching S1 from B1 to B6

- One has to continue the old fashioned way: stand next to S1 table and look at the small BRT target, use the hand paddle to adjust. → The spots should go to their boxes.
- Let LabAO do the final adjustments.

CHARA

S1 Beam Sampler

It is a long (>60cm) translation stage with much more yaw deviation than the other beam samplers. Recent beam switching tests suggest a bent rail with an apex around beam 3.

