

Implementation of ALOHA up-conversion interferometer at 3.39µm (L band)

Ludovic SZEMENDERA - Xlim Photonics PhD supervisors : F. REYNAUD and L. GROSSARD

Monday 14th march 2016

Sac

(日)

Contents

1 General framework

2 Theory and technologies

3 In-lab results

4 Conclusion and broad perspectives

Sac

3

イロト (語) (ヨ) (ヨ)

1 General framework

- 2 Theory and technologies
- 3 In-lab results
- 4 Conclusion and broad perspectives

Several instrument projects adapted for MIR and FIR have already been proposed :

Their sensitivities are limited by the noise generated by optical elements (black body emissions)

э

Advantages of the synthetic aperture and nonlinear optics combination

Transposing infrared signal into visible or NIR domain

Implementation of ALOHA up-conversion interferometer at 3.39µm (L band)

Advantages of the synthetic aperture and nonlinear optics combination

Transposing infrared signal into visible or NIR domain

avoid noise linked to the detection chain;

Advantages of the synthetic aperture and nonlinear optics combination

Transposing infrared signal into visible or NIR domain

- avoid noise linked to the detection chain;
- allows to benefit optical guided elements (fibers);

Advantages of the synthetic aperture and nonlinear optics combination

Transposing infrared signal into visible or NIR domain

- avoid noise linked to the detection chain;
- allows to benefit optical guided elements (fibers);
- allows to realise spectral filtering (tunable);

Advantages of the synthetic aperture and nonlinear optics combination

Transposing infrared signal into visible or NIR domain

- avoid noise linked to the detection chain;
- allows to benefit optical guided elements (fibers);
- allows to realise spectral filtering (tunable);
- allows to benefit efficient detectors (silicon).

1 General framework

- 2 Theory and technologies
- 3 In-lab results
- 4 Conclusion and broad perspectives

Frequency transposition thanks to sum frequency generation

We use SUM FREQUENCES (SFG)

■ 2nd order nonlinear process $(\chi^{(2)})$

Implementation of ALOHA up-conversion interferometer at 3.39µm (L band)

Frequency transposition thanks to sum frequency generation

We use SUM FREQUENCES (SFG)

■ 2nd order nonlinear process $(\chi^{(2)})$

no intrinsic noise (Louisel)

It is led by two equations :

power conservation :

$$v_c = v_p + v_s$$

Sac

(日)

CHARA 2016: Adaptive Optics and Perspectives on Visible Interferometry Sum Frequency Generation (SFG)

Quasi Phase Matching

PPLN : Periodically Poled Lithium Niobate

810nm

590

(ロ)

Our nonlinear crystals : PPLN

Key features of the crystals given by the university of Paderborn (Germany) :

 they are guided (single mode @3.39 μm);

イロト (語) (ヨ) (ヨ)

PPLN : Periodically Poled Lithium Niobate

Sar

Our nonlinear crystals : PPLN

Key features of the crystals given by the university of Paderborn (Germany):

■ they are guided (single mode @3.39 µm);

イロト (語) (ヨ) (ヨ)

they have got "tapers";

PPLN : Periodically Poled Lithium Niobate

Sac

Our nonlinear crystals : PPLN

Key features of the crystals given by the university of Paderborn (Germany =) :

■ they are guided (single mode @3.39 µm);

(日)

- they have got "tapers";
- they have an HR mirror @1064 nm;

PPLN : Periodically Poled Lithium Niobate

Sac

Our nonlinear crystals : PPLN

PPLN : Periodically Poled Lithium Niobate

Key features of the crystals given by the university of Paderborn (Germany):

- they are guided (single mode @3.39 µm);
- they have got "tapers";
- they have an HR mirror @1064 nm;
- their output face is slanted (Fresnel's reflection ~ 14% @1064 nm).

(日)

Sac

PPLN's temperature are controlled in order to :

SQA

э

PPLN's temperature are controlled in order to :

obtain a tunable spectral filtering;

SQA

э

イロト (語) (ヨ) (ヨ)

Cristal's temperature control

PPLN's temperature are controlled in order to :

- obtain a tunable spectral filtering;
- avoid temperature gradients (better efficiency and stability) .

Sac

イロト (語) (ヨ) (ヨ)

1 General framework

2 Theory and technologies

3 In-lab results

4 Conclusion and broad perspectives

•	CHARA 2016: Adaptive	Optics and	Perspectives on	Visible	Interferometry
---	----------------------	-------------------	------------------------	---------	----------------

In-lab setup

In-lab setup

500

æ

ヘロト 人間 とくほ とくほとう

In-lab setup

- P_S : signal power ($\lambda_s = 3.39 \ \mu m$)
- P_C : converted signal power ($\lambda_c = 810 \text{ nm}$)
- P_P : pump power $(\lambda_p = 1064 \text{ nm})$

nac

イロト イポト イヨト イヨト

- P_C : converted signal power ($\lambda_c = 810 \text{ nm}$)
- P_P : pump power $(\lambda_p = 1064 \text{ nm})$

According to this definition, η includes : SFG efficiency

- P_C : converted signal power $(\lambda_c = 810 \text{ nm})$
- \blacksquare P_P : pump power $(\lambda_p = 1064 \text{ nm})$

According to this definition, η includes :

- SFG efficiency
- insertion losses

insertion losses

Iosses due to filtering

• P_P : pump power ($\lambda_p = 1064 \text{ nm}$)

Implementation of ALOHA up-conversion interferometer at 3.39µm (L band)

First in-lab results with a high flux MIR source

・ロト・日本・日本・日本・日本

First in-lab results with a high flux MIR source

イロト イポト イヨト イヨト

We got first interferometric fringes from a converted signal at $810\ nm$ from a MIR signal at $3.39\ \mu m$

$$C_{DSP}^2 = \frac{2 \cdot \sum B(v_i)}{B_0}$$

Measured contrast is 97.2%.

Publication : In-lab ALOHA mid-infrared up-conversion interferometer with high fringe contrast $@\lambda = 3.39 \ \mu m$ - MNRAS vol.457 - n °3 - fev.2016

Method of contrast measurement in photon counting regime

Mesures du contraste

time frame acquisition (single photon counting module)

Implementation of ALOHA up-conversion interferometer at 3.39µm (L band)

SQA

(ロ)

Method of contrast measurement in photon counting regime

Mesures du contraste

- time frame acquisition (single photon counting module)
- 2 calculation of the SPD on each frame (VI LabView[©])

Implementation of ALOHA up-conversion interferometer at 3.39µm (L band)

Method of contrast measurement in photon counting regime

Mesures du contraste

- 1 time frame acquisition (single photon counting module)
- 2 calculation of the SPD on each frame (VI LabView[©])
- integration : summation on all SPD (VI LabView©)

(日)

Method of contrast measurement in photon counting regime

Mesures du contraste

- **1** time frame acquisition (single photon counting module)
- 2 calculation of the SPD on each frame (VI LabView[©])
- integration : summation on all SPD (VI LabView©)

Experimental conditions

- Frame time : 400 ms
- Number of frames : from 300 to 1200

æ

▲ロト ▲御 と ▲注 と ▲注 と

$B(v_f)$

N_{mod} : converted photons (on fringe channel)

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト

э

Contrast calculation

$B(v_f)$

- *N_{mod}* : converted photons (on fringe channel)
- ⟨N_{cp}⟩_t : average number of photons

ヘロト 人間 とくほ とくほ とう

500

э

Contrast calculation

$B(v_f)$

- *N_{mod}* : converted photons (on fringe channel)
- ⟨N_{cp}⟩_t : average number of photons

ヘロト 人間 ト 人 ヨト 人 ヨト

Contrast calculation

$B(v_f)$

- *N_{mod}* : converted photons (on fringe channel)
- ⟨N_{cp}⟩_t : average number of photons

ヘロト 人間 とくほとくほとう

Contrast calculation

$B(v_f)$

- *N_{mod}* : converted photons (on fringe channel)
- ⟨N_{cp}⟩_t : average number of photons

 B_0

- N_{hv} : converted photons
- EODC : electro-optic dark count

Contrast calculation

$$C = \frac{\sqrt{B_{\rm v_f} - \langle N_{\rm cp} \rangle_t}}{\sqrt{B_0 - \langle N_{\rm cp} \rangle_t} - EODC}$$

990

æ

ヘロト 人間 とくほとくほとう

990

æ

(ロ)

590

Experimentally

With 100 mW pump power, we observe 20cp/s due to thermal effects.

(ロ)

Principal

1 a pump photon generates a signal photon and an idler one

・ロト ・聞 ト ・ 国 ト ・ 国 ト

э

Parametric fluorescence and cascading effect

Principal

- 1 a pump photon generates a signal photon and an idler one
- the signal photon is recombined with a pump photon (SFG) to produce a photon at 810 nm

イロト (語) (ヨ) (ヨ)

Parametric fluorescence and cascading effect

Principal

- 1 a pump photon generates a signal photon and an idler one
- 2 the signal photon is recombined with a pump photon (SFG) to produce a photon at 810 nm

Experimentally

With 100 mW pump power, we observe 20cp/s due to parametric fluorescence.

(日)

Results on the photon counting regime

Signal power @1pW on each interferometric arm $(\approx 2 \times 10^7 \text{ photons/s})$

- contrast : 98.6%
- signal to noise ratio : 190

э

1 General framework

2 Theory and technologies

3 In-lab results

4 Conclusion and broad perspectives

SQA

э

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト

At the moment, ALOHA project has a promising balance :

1 building and tests with the in-lab set up

Conclusion : overview of done work

At the moment, ALOHA project has a promising balance :

- building and tests with the in-lab set up
- 2 first fringes with a high flux source

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

Conclusion : overview of done work

At the moment, ALOHA project has a promising balance :

- building and tests with the in-lab set up
- 2 first fringes with a high flux source \mapsto MNRAS february 2016

Conclusion : overview of done work

At the moment, ALOHA project has a promising balance :

- building and tests with the in-lab set up
- 2 first fringes with a high flux source \mapsto MNRAS february 2016
- 3 first fringes on the photon counting regime

< ロ > < 同 > < 回 > < 回 > < 回 > <

Conclusion : overview of done work

At the moment, ALOHA project has a promising balance :

- building and tests with the in-lab set up
- 2 first fringes with a high flux source \mapsto MNRAS february 2016
- ${\scriptstyle 3}$ first fringes on the photon counting regime \longmapsto publication in progress

(日)

Broad perspectives

New tracks for the future :

improvement on performances (new crystals, architecture, etc)

Broad perspectives

New tracks for the future :

- improvement on performances (new crystals, architecture, etc)
- 2 fringes with a blackbody source

Broad perspectives

New tracks for the future :

- improvement on performances (new crystals, architecture, etc)
- 2 fringes with a blackbody source
- 3 implementation on site

Thank you for your attention

