

NPOI Beam Combiners

- New Fringe Engine for NPOI "Classic" beam combiner
 - NSF funded (NMT)
 - Data capture all of 3 spectrometers, all night long
 - Currently half of 2 spectrometers, 30sec buffer
 - Hardware finished (AZES), firmware & software development
 - On-sky testing (Mar 2015, Sep 2015, Feb 2016) of baseline bootstrapping past 3rd zero

• VISION:

- NSF funded (TSU)
- 6-beam, visible-light analog of MIRC
 - 16 Dec 2013: First bootstrapped fringe tracking (5 stations).
 - Currently fringe tracking to 4th magnitude
 - Instrument paper (Garcia+ 2016, PASP) in print, commissioning complete

New Classic: 5-station Bootstrapping

In January 2015 we observed ν UMa, d=4.6 mas, V=3.5 on the W7-AW-AC-AE-E6 station chain

 Notice AE-E6 and AC-AE are the shortest. W7-AW is very long

NC: 5-station Bootstrapping (II)

VISION Instrument Design

- 6-way simultaneous beam combiner
- Simple design: Fringes are made directly on a modern EMCCD
- Photometric channels on an EMCCD for calibration
- Fast fringe searching from an R=200 spectrograph
- Single-mode polarization maintaining fibers spatially filter light for increased visibility precision

VISION creates interference patterns

Non-redundant V-groove Array

Small Fiber Spacing

Large Fiber Spacing

757

850

Derive Amplitude of Interference pattern + Phase of Interference pattern -> Reconstruct Image

Example of Internal Fringes

Beam 1+4

Beam 1+3

Beam 1+5

Fringe fitting & Cross Talk (I)

- We attempted a fringe fitting approach to see if this solves the issue of overlapping power spectra from different beam pairs (crosstalk) which exists at ~1-5% level.
- Fits to fringes with HeNe laser, 2 ms exposures, for all 10 beam pairs.
- Residuals to fits are at the <5% level.
- Fringe model incoporates visibility loss due to pixelation, and beam intensity mis-match.

CHARA 2016: Adaptive Optics and Perspectives on Visible Interferometry

Fringe fitting & Cross Talk (II)

B) We mapped out χ^2 space for our model, finding a degeneracy of ~2% in the fitted visibility parameters for beam pairs 14 and 25 at 3σ contour (red).

A) We added frames with fringes from beam pairs 14 and 25 together, and fit a multi-fringe model

VISION EMCCD Use

- Analysis of read noise, gain, and clock induced charge rate
- Implications for other use of EMCCDs
- CIC rate of VISION Andors: poor
 - Replacement
 Nüvü cameras on order

Correction for Closure Phase Bias

• New correction for an EMCCD:

$$B_{1,ijk} = B_{0,ijk} - 2(|C_{ij}|^2 + |C_{jk}|^2 + |C_{ki}|^2) + 6N + 6N_{pix}\sigma_{RN}^2$$

- EMCCD output is non-Poissonian due to the stochastiscity of the electron multiplying gain (§ 5.3 of Garcia+ 2016)
- Wirnitzer+ (1985) photon noise correction:

$$B_{1,ijk} = B_{0,ijk} - (|C_{ij}|^2 + |C_{jk}|^2 + |C_{ki}|^2) + 2N$$

See also Basden & Haniff (2004), Gordon & Buscher (2012)

Noise Properties of the Data match theory

System visibility for Calibrator stars is stable to 0.01-0.02

Who orbit for binary star ζ Orionis \Rightarrow Expected Amplitude & Phase \checkmark Neasured Amplitude & Phase \checkmark

Future work for VISION

- Install new 2nd generation extra-low noise EMCCDs
 - Andor CCDs → Nüvü CCDs, optimized for low CIC
 - Funded by DURIP
- Begin robust science program
 - High spatial-frequency observations of highly resolved stars
 - Past first zero (LD), 2nd/3rd/4th zeros
 - Imaging, parametric fitting
 - Diameters / shapes, binaries, etc.
 - No stars are spherically symmetric

